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The phase coarsening of precipitates is modeled in the framework of Debye-Hückel theory. The interactions
observed among a population of precipitates dispersed throughout a matrix can be described by diffusion
screening. The relationship between the maximum particle radius and the volume fraction of the phases is
established, and the rate of coarsening is related to the volume fraction and the self-similar particle size
distribution. We simulated the dynamics of late-stage phase separation using multiparticle diffusion methods.
Experimental measurements on the rates of coarsening ofd8sAl3Li d precipitates in binary Al-Li alloys are
compared with our results using modeling and simulation. The theoretically predicted particle size distributions
and the maximum radius expected for particles in the microstructure agree well with recent experimental
results.

DOI: 10.1103/PhysRevE.69.061507 PACS number(s): 64.75.1g, 64.60-i

I. INTRODUCTION

Phase coarsening is a common relaxation process during
late-stage microstructural evolution that leads to a decrease
in the excess total interfacial energy of two-phase systems.
During phase coarsening, larger particles tend to grow by
absorbing solute atoms at the expense of small particles that
tend to dissolve by losing them. Over time, this “competitive
diffusion” results in an increase in the average size of the
particle population, and in a concomitant decrease in the
number density of particles. Indeed, the physical and me-
chanical properties of two-phase materials, such as hardness
and toughness, depend sensitively on the material’s average
particle size and particle size distribution function(PSD).

The statistical mechanics of phase coarsening was initi-
ated by Lifshitz and Slyozov[1] and by Wagner[2]. This
theory is often referred to as LSW theory, and retains full
validity only in the limit of a vanishing volume fraction. The
prediction of LSW theory that the cube of the average length
scale of particles increases linearly with time is, however,
shown to be valid by numerous experiments even in the case
of finite volume fractions. Specifically, LSW found that in
the long-time limit of phase separation the PSD exhibits self-
similar (affine) properties, wherein the microstructure con-
tinuously changes by a single scale factor.

LSW ignored the effect of volume fraction of particles
and the interaction among particles because they assumed
that the neigboring particles are far away from the particle of
interest. However, in real systems such as alloys, a finite
volume fraction of particlesVV is distributed in close prox-
imity, and many-body interactions arise among particles. Nu-
merous attempts have been made over the past 40 years to
improve upon LSW theory by extending its applicability to
the more realistic situation of nonzero volume fractions.
Ardell [3], for example, modified LSW theory to consider
the effect of nearest neighbors on the growth rate of par-
ticles. Ardell’s theory showed that the PSD broadened from
the interactions and the coarsening rate increased with the
volume fraction. His detailed results, however, overestimate
the influence of the volume fraction and deviate considerably
from more recent theories and computer simulations[4].

Variations of Ardell’s method have been studied by Tsumu-
raya and Miyata[5] using a series of coarsening models,
referred to as TM models. Specifically, these authors defined
a “radius of influence” around each particle using six theo-
retical mean-field interactions, and studied the growth rates
of the particles and the nature of the predicted PSD’s. Two of
the six models predicted broadening of the PSD’s. Each of
the six TM models, however, employed heuristic extensions
of the basic LSW approach. Ardell’s original model and the
TM models all belong to the same universality class, and
therefore share some common approximations and exhibit
some similar traits.

Brailsford and Wynblatt[6] employed “effective medium”
theory to study phase coarsening. They obtained growth rates
of the particles and a broadened PSD, and established an
implicit relationship between the coarsening rate and volume
fraction. Marsh and Glicksman[7] then introduced the con-
cept of a statistical “field cell” acting around each size class
of the particles undergoing phase coarsening, and obtained
coarsening rates that are in good agreement with data derived
from liquid-phase sintering experiments, particularly in the
range of volume fractions between 0.3øVVø0.6. All of the
theoretical models mentioned above employed growth rate
equations based on using Laplace’s equation as the quasi-
static approximation for the time-dependent diffusion field
[8].

Marqusee and Ross[9], by contrast, limited the spatial
extent of the Laplacian field by taking into account screening
effects in active two-phase media containing a distribution of
diffusion sources and sinks. Instead of Laplace’s equation,
Marqusee and Ross used Poisson’s equation to derive a ki-
netic expression for the growth rate of particles. They ob-
tained the maximum particle radii in systems at different
volume fractions, the relationship between the coarsening
rate and the volume fraction, and the affine(self-similar)
PSD’s. Following this approach, Fradkovet al. [10] and
Mandyam et al. [11] studied coarsening kinetics in finite
clusters using Poisson’s equation to approximate the multi-
particle diffusion. Their main focus was exposing the rela-
tionship between the diffusion screening length and the
phase volume fractions at extremely low volume fractions.
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More recently, Glicksman, Wang, and Marsh[12] solved the
Debye-Hückel equation to obtain the growth rates of par-
ticles. Those authors established relationships between
particle-particle interactions, the coarsening rates, and the
volume fraction.

The earliest study of multiparticle diffusion during phase
coarsening using numerical simulation was published in
1973 by Weins and Cahn[13], who used just a few particles
in several configurations to demonstrate some basic coarsen-
ing interactions. Their work was followed by an investiga-
tion published by Voorhees and Glicksman[14] who system-
atically studied the behavior of several hundred particles
randomly distributed in a periodic, three-dimensional unit
cell to simulate microstructural phase coarsening. Later,
Beenaker[15] further improved multiparticle diffusion simu-
lation procedures and was able to increase the total number
of particles during simulation to several thousand. Other in-
vestigators[16–18] continued to improve upon the accuracy
and statistical basis of large-scale simulations of late-stage
phase coarsening.

Baldan [19] reviewed the status of experimental studies
on phase coarsening in nickel-base superalloys. Indeed, a
great deal of experimental data currently exist for a variety of
interesting high-temperature alloy systems. However, most
superalloy systems and the conditions for the experiments
applied to them differ from those that are optimal for mod-
eling and simulation. To our knowledge the chief exception
to this situation is that of phase coarsening ofd8–Al3Li pre-
cipitates dispersed in binary Al-Li alloys. The two-phase bi-
nary alloys based on Al-Li provides a nearly ideal binary
system for kinetic study, because thed8 particles in this alloy
have a small lattice mismatch with the solid solution matrix
phase, thus contributing a negligible amount of strain-
induced free energy to the coarsening process. Mahalingam
et al. [20] studied coarsening ofd8–Al3Li precipitates in
binary Al-Li alloys using quantitative transmission electron
microscopy. Mahalingamet al. obtained steady-state PSD’s
and coarsening rates for microstructures having different pre-
cipitate volume fractions. Recently, Snyderet al. [21,22]
studied the coarsening of solid-Sn particles in Pb-Sn eutectic
liquid under microgravity condition. Their experimental
PSD’s, however, were judged as not reflecting steady-state
phase coarsening.

All of the theories mentioned above have shown that a
nonzero volume fraction of particles does not alter the tem-
poral exponent in the coarsening law. However, changing the
volume fractions does alter the coarsening rate, the kinetic
coefficient of the growth law, and the resulting PSD. Despite
this qualitative agreement, quantitative coarsening rates and
PSD’s differ from theory to theory[23]. The agreement
found between theoretically predicted and experimentally
measured volume fraction dependences of the PSD’s and the
coarsening rate is generally not satisfactory. Although many
models and simulations of phase coarsening exist, as men-
tioned above, few provide predictions that compare quanti-
tatively with experimental results. The chief reason for this
disparity is that key assumptions required by many models
and simulations are not satisfied by the experiments. In ad-
dition, the range of volume fractions that have been studied
theoretically is not the same as that used experimentally. In

this paper, we first extend our original diffusion screening
model[12] to resolve the volume fraction dependences of the
maximum particle radius, coarsening rate, and PSD during
steady-state diffusion-mediated phase coarsening. Next, we
simulate phase coarsening in microstructures reflecting the
same volume fraction as used experimentally. Finally, we
compare predictions based on modeling and simulation with
experimental results, and make suggestions for future quan-
titative studies of late-stage phase coarsening.

The organization of this paper is as follows: In Sec. II, we
briefly introduce the diffusion screening model of coarsening
interactions and describe some results. In Sec. III, we pro-
vide details of recent multiparticle diffusion simulations. In
Sec. IV, we compare predictions from modeling and simula-
tion with experimental observations. Finally, in Sec. V, we
conclude with discussion and a summary.

II. MODELING

An initial modeling of diffusion-limited phase coarsening
was published in our previous paper[12]. However, in this
section, we describe the differences with and improvements
over prior modeling[12], and make the modeling more com-
prehensive. The spherical particle size is specified by the
dimensionless radiusR and its dimensionless volume per
steradian V. All length scales are nondimensionalized
through the appropriate capillary length,lc=2gVm/RgT, and
the coarsening time is nondimensionalized through the char-
acteristic diffusion timetd= lc/DC0Vm to yield the dimen-
sionless timet whereg, Vm, D, C0, Rg, andT represent the
surface energy, molar volume, diffusivity, and solute concen-
tration in the matrix phase at a planar interface, universal gas
constant, and the absolute temperature, respectively. We
adopt the usual mean-field ansatz that, at any instant in time,
there exists acritical particle size such that the growth rate
averaged over all particles having this size is zero. The criti-
cal radius of the population of particles is denoted byR!std,
and the renormalized radius of a particler is defined as its
ratio R/R!.

The central challenge of any phase coarsening theory is to
formulate an accurate expression for the renormalized par-
ticle growth rateṙ in each size class of the dispersoid popu-
lation. Several studies suggest for microstructures with mod-
erate volume fractions of the dispersed phasesVVø0.3d, that
there exists interactions among particles, and diffusive ex-
changes between them that depend on their relative sizes and
spatial positions. Developing a detailed description of these
particle-particle interactions would be prohibitively difficult
for a microstructure comprised of a large number of different
sized particles. The challenge is how best to simplify such a
many-body system so that an accurate result is still obtained.
One method of incorporating particle-particle interactions
during late-stage phase coarsening, at least to first order, is to
represent the individual interactions by a “diffusion screen-
ing length” R0. The diffusion screening length—a collective
property of the particle population—sets the range over
which interactions occur, and beyond which they cease. The
normalized diffusion screening length may be shown to be
defined asr0;R0/R! [12].
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To proceed with an analysis of a diffusionally screened
coarsening system of polydisperse spherical particles sus-
pended in a three dimensional matrix, one specifies the sizes
of particles by the distributionFsR,td, defined here as the
total number of particles per unit volume at timet, with radii
betweenR andR+dR. The emission of solute from dissolv-
ing particles, or its absorption by growing particles, is mod-
eled mathematically by a distribution ofsourcesor sinks
throughout the two-phase microstructure. A consequence of
the system being an “active medium” is that the spatial ex-
tent of the diffusion field surrounding the particles, on aver-
age, is restricted through diffusion screening. The onset of
diffusive screening with any nonzero volume fraction re-
quires that the Poisson equation replace the usual Laplacian
approximation for quasistatic diffusion[8], which yields the
diffusion analog of the Debye-Hückel equation, namely[10]

¹2wsrWd − k2fwsrWd − w`g = 0, s1d

where wsrWd=fCsrWd−C0g /C0 defines a dimensionless poten-
tial. CsrWd is the physical concentration field in the continuous
matrix surrounding the particles, andk;R0

−1 is introduced as
the diffusion analog of the reciprocal diffusion screening
length.w` is the pervading “background” diffusion potential
in the matrix. Equation(1) is well known from theories of
dilute ionic solutions and plasmas.

The general solution to the Debye-Hückel equation can be
expressed in the form of the well-known Yukawa potential as
[10]

wsrd = A −
B

r
exps− krd, s2d

whereA andB are constants, andr is the distance from the
center of theith particle to the field point. It should be noted
that the termB/ r in Eq. (2) corresponds to the unscreened
Coulombic potential in three-dimensions, i.e., the spherical
Laplacian potential. This Laplace potential is effectively “cut
off” by the exponential term over the diffusion screening
length. One can determine the constantsA andB in Eq. (2)
by using the Gibbs-Thomson local equilibrium relation at the
surface of theith particle, namely,wsRid=1/Ri, and an addi-
tional boundary condition that specifies the outer potential at
the diffusion screening distance,wsR0d=1/R!. One may now
obtain the kinetic growth law of a spherical particle to first-
order at small volume fractions by calculating the volume
flux using the interfacial concentration gradient and the con-
centration jump specified by the phase diagram; specifically,
one finds that

dr

dt
=

1

K!

sr − 1d
r2 S1 +

r

r0
D − r, s3d

where

K! =
1

3

dsR!d3

dt
. s4d

K! is the coarsening rate constant for the critical size[12].
The dimensionless time variablet is defined as

t ;
1

3
lnsR!d3. s5d

The full details in deriving Eq.(3) were published in our
previous paper[12]. The normalized diffusion screening
length r0 is related directly to the ratio of moments of the
PSD and to the square root of the system’s volume fraction
as follows:

r0 =Î kr3l
3krlVV

. s6d

Equation(6) clearly shows that the interactions among par-
ticles are explicitly related to the volume fraction parameter,
and implicitly to the PSD through the moments of the affine
(scale free) PSD. Marsh and Glicksman’s study[7] of the
steady-state form of the PSD shows that the ratiokr3l / krl
varies slowly with volume fraction, and remains of unit or-
der. Their result implies that the diffusion screening length in
Eq. (6), at least at small volume fractions, should be propor-
tional toVV

−1/2 in finite systems, and the coarsening rate con-
stant relative to that of the LSW theory should increase ap-
proximately asVV

1/2—both key predictions that may be tested
directly by experiment. Carlowet al. [24] also obtained simi-
lar predictions earlier through estimation.

Following the classical LSW approach[1], the distribu-
tion functionFsr ,td satisfies the continuity equation

] Fsr,td
] t

+
]

] r
Sdr

dt
Fsr,tdD = 0. s7d

The Mullins hypothesis of statistical self-similarity can be
applied in the late stages of phase coarsening[25]. The dis-
tribution function achieves an affine form insofar asFsr ,td
may be recast in a product-function form, specifically as
Fsr ,td=GsrdHstd. Here the functionHstd is the time-
dependent portion of the distribution function that specifies
its temporal behavior, however, its explicit form is not im-
portant here.Gsrd is the time-independent, normalized PSD
and satisfies the following equation:

d

dr
Sdr

dt
D +

1

Gsrd
dr

dt

dGsrd
dr

= l, s8d

wherel is the separation constant, or eigenvalue. The gen-
eral solution to Eq.(8) is

Gsrd =
A

dr/dt
expFE

0

r 1

dr/dt
drG , s9d

where we have absorbedl into the normalization constantA
determined by the normalization condition of the PSD. As
shown in Eq.(9) the normalized PSD can be obtained from
Eq. (9), provided that the growth ratedr /dt is known. Be-
fore one attempts to calculate the PSD from Eq.(9), how-
ever, one must determine the constantK! appearing in the
growth rate equation(3).

Lifshitz and Slyozov[1] proved that steady-state solutions
to Eq.(8) are possible if and only ifK! remains constant, the
value of which may be determined by applying stability con-
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ditions inr space. Specifically, Lifshitz and Slyozov showed
that stability based on mass conservation inr space is
achieved when two conditions are simultaneously satisfied:

Udr

dt
U

r=rmax

= 0, and
d

dr
Sdr

dt
D

r=rmax

= 0. s10d

Furthermore, application of these stability conditions lead
to the following two results for the coarsening rate constant
and the maximum particle radius:

K* =
2 − s1 − 1/r0ds1 − r0 + Îr0

2 + r0 + 1d

s1 − r0 + Îr0
2 + r0 + 1d3

s11d

and

rmax= 1 −r0 + Îr0
2 + r0 + 1. s12d

Equations(11) and(12), respectively, relate the rate constant
K! and the maximum radiusrmax directly to the normalized
diffusion screening length, and hence directly to the interac-
tions occurring among the particles. Applying the relation-
ship between the diffusion screening length and the volume
fraction, Eq. (6), to Eq. (12), and approximatingkr3l / krl
<1, one may relate the maximum particle radius in the
population directly to the volume fraction as

rmax= 1 −
1

Î3VV

+Î 1

3VV
+

1
Î3VV

+ 1. s13d

We note that Ardell predicted the relationship between the
maximum radius of a coarsening particle to the volume frac-
tion using his model[3], as did Marqusee and Ross with
theirs [9]. A comparison of the maximum radius of a coars-
ening particle predicted from the current diffusion screening
approach with those by Ardell and by Marqusee and Ross are
plotted in Fig. 1 as a function of the microstructure’s volume

fraction. Indeed, asVV→0, the asymptotic limit is ap-
proached, viz.,rmax→1.5, recapturing the classical result ob-
tained by LSW[1]. Different approximations used in the
present theory and those employed by Ardell and Marqusee
and Ross result in the detailed differences exhibited in Fig. 1.
The important issue, however, from the standpoint of im-
proving our understanding of the physics of microstructure
evolution, is that such theoretical predictions can stimulate
additional experimental studies to test them.

It is easier to measure experimentally theaverageradius
kRl and thus implement the kinetic coarsening equation in
terms of average radius rather than critical radius. Combin-
ing Eq. (4) with the definition of the normalized radius, one
obtains the kinetic coarsening equation(14) in terms of the
average radius,

kRstdl3 − kRs0dl3 = 3KsVVdt, s14d

where

KsVVd = 3K!krl3. s15d

kRs0dl is the average radius att=0, andKsVVd is the coars-
ening rate constant at a volume fractionVV. The ratio of
KsVVd to Ks0d, whereKs0d=8/9 [1], can therefore be ex-
pressed as

KsVVd
Ks0d

=
27

8
K*krl3. s16d

Inserting Eq.(11) into Eq. (16) yields the relationship be-
tween the relative coarsening rate and the key microstruc-
tural length scales,

KsVVd
Ks0d

=
27

8 F2 − s1 − 1/r0ds1 − r0 + Îr0
2 + r0 + 1d

s1 − r0 + Îr0
2 + r0 + 1d3 Gkrl3.

s17d

Equation(17) specifically shows that the influence of volume
fraction on the coarsening rate occurs through the diffusion
screening lengthr0 and the cube of the average normalized
radiuskrl. The proportionality between the relative coarsen-
ing rateKsVVd /Ks0d and the cubed average normalized ra-
dius was confirmed previously both by Brailsford and Wyn-
blatt [6] and by Ardell [3]. On this point, interestingly, the
three theories agree. However, the proportionality coefficient
is a complicated function of the volume fraction, and does
differ among the three theories. The differences among these
coarsening theories is shown in Fig. 2. Figure 2 also suggests
that the present prediction is between 6% and 16%, respec-
tively, below independent computations carried out by
Mandyam et al., who used both “snapshot” and dynamic
simulations in the range of volume fractions 0.1–0.3.[11].
The computer simulations by Mandyamet al. included inter-
actions among particles[11], whereas those by Akaiwa and
Voorhees[16] included both interactions and spatial correla-
tions. The relative coarsening rates predicted from Marsh
and Glicksman’s field cell model[7] are between 17% and
39% higher than the present theoretical findings, 8–18%
higher than the simulation results[11,16] and between 4%

FIG. 1. The relationship between the normalized maximum ra-
dius rmax and volume fractionVV. The present work is compared
with the results from the theories of Ardell[3] and Marqusee and
Ross(MR) [9].
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and 10% higher than the predictions by Brailsford and Wyn-
blatt [6]. In addition, theoretical predictions for the growth
rates of the average particle from models III and VI of
Tsumuraya and Miyata are four to five times larger than
those predicted by the present work, and all the other theo-
retical, simulated, and experimental results. Ardell’s coarsen-
ing rates[3] are also higher(by factors of 3–4) than are the
other theoretical, simulation, and experimental results. These
comparisons imply that Ardell and Tsumuraya and Miyata
overestimated the contributions from the interactions among
particles to the average growth rate. Because of the large
disparity the coarsening rates predicted from Tsumuraya and
Miyata, and Ardell, are not included in Fig. 2.

Figure 3 shows the PSD derived from the present theory
for various values ofVV, from 0 to 0.3, all of which are
obtained by numerical solution of Eq.(9) with the approxi-
mation,kr3l / krl<1, for calculation of the normalized diffu-
sion screening lengthr0. After obtaining PSD’s for various
volume fractions, we calculated the ratio,kr3l / krl, for dif-
ferent volume fractions to check the approximation. We
found that the ratio varies extremely slowly with volume
fraction, but remains about 12% different from unity. These
results from some PSD’s will be compared with our own
simulations and experimental results in Sec. IV.

III. SIMULATION

A two-phase coarsening system may be simulated by
placing n particles of the dispersoid phase in a cubic box.
The contiguous spaces between the particles are filled by the
matrix phase, throughout which the dispersoid population is
embedded. Particles are located by specifying the positions
of their centers with three random coordinates representing
the Cartesian vectorsrW i and by their radiiRi chosen initially

from a relatively narrow Gaussian distribution.
Some additional simplifying assumptions are needed:(i)

the kinetics of coarsening is determined solely by volume
diffusion through the matrix; and(ii ) the diffusion transport
to or from each phase domain occurs slowly enough to be
considered quasistatic. In the simulation, we use Laplace’s
equation as the quasistatic approximation to describe the
multiparticle concentration fields in the matrix, so that

¹2CsrWd = 0, s18d

whereCsrWd is the dimensionless concentration of the Laplac-
ian diffusion field. The boundary conditions at the spherical
interface of theith particle are specified through the Gibbs-
Thomson local equilibrium solubility relation, namely

CsRid =
1

Ri
. s19d

The solution to Laplace’s equation forn particles may be
represented as the superposition ofn dimensionless concen-
tration fields summed over the system of particles, namely,

CsrWd = o
i=1

n
Bi

ur − r iu
+ C`. s20d

The ith particle’s total volume flux 4pBi and the far-field
potentialC` comprisen+1 unknowns. The microstructure’s
global mass conservation law for a discrete system consist-
ing of n spherical particles may be expressed through the
volume fluxes asoi=1

n Bi =0. Using Eq.(20) along with the
mass conservation law, one obtains after a few steps of alge-
bra

FIG. 2. Coarsening ratesKsVVd normalized by the LSW coars-
ening rateKLSW vs volume fractionVV. The present work is com-
pared with results from other theories(all solid symbols) Brailsfor-
dand and Wynblatt[6], Marqusee and Ross[9], and Marsh and
Glicksman[7]. Simulation results(all open symbols) of Akaiwa and
Voorhees[16] and Mandyamet al. [11] are also shown.

FIG. 3. Particle size distributions derived from screening theory
(present work), Gsrd, versus normalized radiusr for several volume
fractions, VV=0.1,0.12,0.2,0.3. TheGsrd function from LSW
theory sVV=0d is shown for comparison.
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C` =
1

kRl
−

1

nkRlok=1

n

Bko
jÞk

n
Rj

r jk
, s21d

wherer jk is the distance between the centers of any pair of
particles j andk. The relationship for the far-field potential,
Eq. (21), expresses microstructure responses that include in-
teractions among particles. Equation(21) clearly demon-
strates that the far-field potentialC` depends explicitly on
local information concerning particle positions and the dis-
tances between particle pairs. Moreover, Eq.(21) includes
enough detailed environmental information to describe the
“locale” of every particle, and, most importantly, its subtle
influence on the particle’s diffusion-limited growth or shrink-
age.

The volume flux entering or leaving the surface of each
particle may be related to the kinematics of the rate of
change of spherical volume, to yield the dimensionless form
of the growth rate of theith particle,

dRi

dt
= −

Bi

Ri
2 si = 1,2, . . . ,nd. s22d

The Runge-Kutta method was used to integrate the growth
rate, Eq.(22). One obtains a system of linear equations by
substituting Eq.(20) into the Gibbs-Thomson boundary con-
dition, Eq. (19), for the population ofn particles. The set of
linear equations may be cast in matrix form as

A8 ·B8 = U8, s23d

whereA8, B8, andU8 are, respectively,n3n, n31, andn
31 matrices. These matrices are detailed in the Appendix.
The Gauss-Seidel method was employed to solve the result-
ant system of linear equations, Eq.(23), yielding at each time
step updated values for theBi’s. Substitution of the updated
Bi’s back into Eq.(22) dynamically advances(marches) the
coarsening by sequentially updating both the radii of all the
particles and their coordinates at any time step. The environ-
mental information built into Eq.(21) adds important micro-
structural physics to the diffusion solution in the form of
correlations. In fact, in the present simulations, one can cal-
culate all terms exactly in Eq.(21), which means that one
can calculate all the interactions for every particle. Normally
mean-field descriptions of microstructure evolution are un-
able to calculate all interactions included in Eq.(21).

We carried out simulations of late-stage coarsening for
various values of the volume fraction of the dispersoid phase
from 10−10 to 0.2. The PSD’s observed for volume fractions
VV=0.001,0.01,0.12 are plotted in Fig. 4, which shows that
the height of a PSD is gradually reduced and its width com-
mensurately broadened with increasing volume fraction.

The growth law for particles for a dispersoid volume frac-
tion of VV=0.12 is plotted in Fig. 5. The double logarithmic
plot, Fig. 5, clearly shows that, after some transient period, a
steady-state growth law develops where the cubic average
radius of particles becomes proportional to the time. The
coarsening rate constant of the cubic growth law is deter-
mined by the slope ofkRstdl3 vs t plot. The slope is calcu-
lated using a linear regression of these data. Using the defi-
nition of relative coarsening rate, the coarsening rate

constant normalized by the coarsening rate constant of LSW,
we obtainedKs0.12d /Ks0d=1.828, which is close to the
value, 1.814, derived from the present screening theory.

IV. COMPARISON WITH EXPERIMENT

Because the Al-Li system contains spherical precipitates
with negligible strains at the particle-matrix interface, this
binary alloy provides a nearly ideal system for studies of
coarsening. Mahalingamet al.used quantitative transmission

FIG. 4. Particle size distributionsGsrd derived from simulations
based on the present work atVV=0.001,0.01,0.12. Increasing the
volume fraction of the dispersoid lowers the peak value and broad-
ens the PSD.

FIG. 5. Cube of the average particle dimensionless radiuskRl3

vs dimensionless coarsening time(double logarithmic coordinates).
Data are from the present simulations at the volume fractionVV

=0.12.
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electron microscopy[20] to investigate the coarsening be-
havior of d8 precipitates in a series of binary Al-Li alloys.
These authors carried out careful experiments and obtained
the microstructure’s steady-state PSD. Mahalingamet al.
claimed that only the PSD predicted from the theory of
Davieset al. [26] is close to their experimental PSD for the
case of volume fraction ofd8 VV=0.12, despite the fact that
the other theories also predict a broadening of the PSD with
increase of volume fraction of particles. Figure 6 shows the
PSD’s at volume fractionVV=0.12 derived from the present
theory and simulation, and from the experimental data of
Mahalingamet al. [20]. Figure 6 shows that the PSD’s from
the present theory is in good agreement with the experimen-
tal PSD. We incorporated diffusional interactions among par-
ticles that yielded a new growth rate equation. When inserted
into the continuity equation the new growth rate equation led
to the PSD shown in Fig. 6. However, in their treatment of
coarsening kinetics, Davieset al.used the LSW kinetic equa-
tion that lacks all particle-particle interactions, but added the
influence of coalescence to the continuity equation. In fact,
for the case of volume fractionVV=0.12, Mahalingamet al.
[20] specifically note that they did not observe any coales-
cence effects in their experiments. Although Davieset al.
[26] predict a PSD in reasonable agreement with the recent
experimental results, the mechanism responsible for the
broadening of their PSD from that predicted by LSW is not
applicable. In fact, diffusional interactions—i.e., “soft colli-
sions” and not coalescences—among the particles, as ex-
plained in this paper, contribute most of the broadening to
the PSD at lower volume fractions. In microstructures with
much higher dispersoid volume fractions the effect of coa-
lescence may become significant.

It is interesting to point out that the PSD derived from the
present simulations is even closer to the experimental results
of Mahalingamet al. [20] at volume fractionVV=0.12. The
reason for the better correspondence of our simulation-based

PSD with experiment, as compared with continuum screen-
ing theory, is that in our simulationsall the multiparticle
interactions are included throughout the system. However, in
modeling, one must approximate these interactions. In Fig. 6,
it is demonstrated that the tail of the PSD derived from our
simulations mimics the experimental data. We obtained an
estimate for the maximum normalized radius using Eq.(13),
and found at a volume fractionVV=0.12 thatrmax<1.67.
Using computer simulations, we found the corresponding
maximum normalized radiusrmax<1.74. The experimental
result reported by Mahalingamet al. shows that the corre-
sponding maximum normalized radiusrmax<1.80 [20]. Fig-
ure 1 shows that at a dispersoid volume fraction ofVV
=0.12, Marqusee and Ross’s theory predictsrmax<1.70, and
Ardell’s theory predictsrmax<1.90.

In an attempt to calculate the relative kinetic coarsening
rate, Ks0.12d /Ks0d, we obtained the following results from
the continuum theory and simulation:Ks0.12d /Ks0d=1.81
and Ks0.12d /Ks0d=1.83, respectively, which are markedly
different from the experimental valueKs0.12d /Ks0d=3.72
[20]. The value of the calculated coarsening rate is sensitive
to the choice of the particle-matrix interfacial energy and the
interdiffusion coefficient for the matrix, both of which re-
main uncertain. This suggests that one needs more extensive
and accurate thermophysical data for experimental alloys
used to test kinetic coarsening rate constants.

V. CONCLUSIONS

We approximated a two-phase microstructural system
consisting of a spherical dispersoid phase randomly distrib-
uted within a matrix phase as a mesoscopic distribution of
diffusion sources and sinks. Within the framework of a Pois-
son approximation for the quasistatic diffusion field, Yukawa
solutions to the well-known Debye-Hückel equation may be
used to describe the screened concentration fields surround-
ing the particles. The contributions of the effective interac-
tions among a population of particles to the average growth
rate of a particle was found. Such interactions increase the
coarsening rate and alter in specific ways the PSD at any
volume fractionVVø0.3. Computer simulations were carried
out for various values of the dispersoid volume fractions
using multiparticle diffusion techniques that exactly consider
diffusional interactions among particles. Our results from
modeling and simulation are in acceptable agreement with
experimental results derived from Al-Li alloys.

Several additional specific conclusions can be drawn from
this study:

(i) At small-to-moderate volume fractions of the precipi-
tate phases0,VV,0.3d, the interaction screening length
among particles is proportional toVV

−1/2—a theoretical pre-
diction which may now be tested through experiments.

(ii ) Stronger interactions among particles reduce the
height and broaden the steady-state PSD. Moreover, the
present study established the relationship between the maxi-
mum radius of a particle and the volume fraction via Eq.
(13). This too can be tested through experiment. AtVV
=0.12, we found that the maximum normalized radiusrmax
<1.67 from the continuum screening theory, andrmax

FIG. 6. Particle size distributions(normalized) gnsrd from
present screening theory and simulations compared with the experi-
mental PSD of Mahalingamet al. [20] for Al-Li alloy at a disper-
soid volume fraction ofVV=0.12. The normalization used is to set
the peak value,gn

max=1, equal to unity.
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<1.74 based on our multiparticle computer simulations. The
experimental results of Mahalinghamet al. show that in
Al-Li two phase alloys,rmax<1.80 atVV=0.12.

(iii ) The relative coarsening rate,KsVVd /Ks0d, derived
from screening theory is similar to that predicted by Brails-
ford and Wynblatt’s theory[6], and is in reasonable agree-
ment with recent multiparticle computer simulation results
[11,16]. In the specific case whereVV=0.12, the relative
coarsening rate from screening theory agrees with multipar-
ticle simulations reported here; however, the result differs by
a factor of about 2 from experiment[20]. The difference
might be related to the choice of particle-matrix interfacial
energy and matrix interdiffusion coefficient used in the ex-
perimental study. More extensive and accurate thermophysi-
cal data are needed for experimental alloys used to test the
coarsening rates derived from theory and simulation.

(iv) Estimates of the PSD’s derived from modeling and
simulation atVV=0.12 are in good agreement with the PSD
derived from experimental results on Al-Li alloys[20]. We
found that it is not neccessary to include coalescence effects
at this relatively low volume fraction to predict an accurate

PSD. Accurate description of interparticle interactions seems
sufficient to obtain a PSD in good agreement with experi-
ment, at least at lower volume fractions.
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APPENDIX

Using terms and definitions already included in the body
of this paper, matricesA8, B8, andU8 in Eq. (23) are defined
as follows:

A8 =1
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n
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B8 =1
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U8 =1
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