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Modeling and simulation for phase coarsening: A comparison with experiment
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The phase coarsening of precipitates is modeled in the framework of Debye-Huickel theory. The interactions
observed among a population of precipitates dispersed throughout a matrix can be described by diffusion
screening. The relationship between the maximum particle radius and the volume fraction of the phases is
established, and the rate of coarsening is related to the volume fraction and the self-similar particle size
distribution. We simulated the dynamics of late-stage phase separation using multiparticle diffusion methods.
Experimental measurements on the rates of coarseningj(8f3Li) precipitates in binary Al-Li alloys are
compared with our results using modeling and simulation. The theoretically predicted particle size distributions
and the maximum radius expected for particles in the microstructure agree well with recent experimental
results.
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I. INTRODUCTION Variations of Ardell’s method have been studied by Tsumu-

Phase coarsening is a common relaxation process duridgy@ and Miyata[S] using a series of coarsening models,

late-stage microstructural evolution that leads to a decreadgferred to as TM models. Specifically, these authors defined

in the excess total interfacial energy of two-phase system@ ‘radius of influence” around each particle using six theo-
During phase coarsening, larger particles tend to grow b);etlcal mean-field interactions, and studied the growth rates

absorbing solute atoms at the expense of small particles thgf (e particles and the nature of the predicted PSD’s. Two of

tend to dissolve by losing them. Over time, this “competitivethe SiX R;I)delsdplredri]cted broaden:ng ?jf r:he PSD's. Each of
diffusion” results in an increase in the average size of thd"€ SX TM models, however, employed heuristic extensions

particle population, and in a concomitant decrease in th f the basic LSW approach. Ardell's original model and the

number density of particles. Indeed, the physical and me; M models all belong to the same universality class, and

chanical properties of two-phase materials, such as hardnetherefore share some common approximations and exhibit
prop P ' Sme similar traits.

and_toughness, depe_nd sgnsiti\_/ely on the mat_erial’s average pyailsford and Wynblatf6] employed “effective medium”
particle size and particle size distribution functid®SD.  heory to study phase coarsening. They obtained growth rates
The statistical mechanics of phase coarsening was initig the particles and a broadened PSD, and established an
ated by Lifshitz and Slyozoyl] and by Wagne(2]. This  jmpiicit relationship between the coarsening rate and volume
theory is often referred to as LSW theory, and retains fullfraction. Marsh and Glicksmafv] then introduced the con-
validity only in the limit of a vanishing volume fraction. The cept of a statistical “field cell” acting around each size class
prediction of LSW theory that the cube of the average lengttof the particles undergoing phase coarsening, and obtained
scale of particles increases linearly with time is, howevercoarsening rates that are in good agreement with data derived
shown to be valid by numerous experiments even in the casieom liquid-phase sintering experiments, particularly in the
of finite volume fractions. Specifically, LSW found that in range of volume fractions between &3/,<0.6. All of the
the long-time limit of phase separation the PSD exhibits selftheoretical models mentioned above employed growth rate
similar (affine) properties, wherein the microstructure con- equations based on using Laplace’s equation as the quasi-
tinuously changes by a single scale factor. static approximation for the time-dependent diffusion field
LSW ignored the effect of volume fraction of particles [8].
and the interaction among particles because they assumed Marqusee and Rosg@], by contrast, limited the spatial
that the neigboring particles are far away from the particle oextent of the Laplacian field by taking into account screening
interest. However, in real systems such as alloys, a finiteffects in active two-phase media containing a distribution of
volume fraction of particled/y, is distributed in close prox- diffusion sources and sinks. Instead of Laplace’s equation,
imity, and many-body interactions arise among particles. NuMarqusee and Ross used Poisson’s equation to derive a ki-
merous attempts have been made over the past 40 yearsretic expression for the growth rate of particles. They ob-
improve upon LSW theory by extending its applicability to tained the maximum particle radii in systems at different
the more realistic situation of nonzero volume fractions.volume fractions, the relationship between the coarsening
Ardell [3], for example, modified LSW theory to consider rate and the volume fraction, and the affieelf-similap
the effect of nearest neighbors on the growth rate of parPSD’s. Following this approach, Fradkat al. [10] and
ticles. Ardell's theory showed that the PSD broadened fronMandyamet al. [11] studied coarsening kinetics in finite
the interactions and the coarsening rate increased with thausters using Poisson’s equation to approximate the multi-
volume fraction. His detailed results, however, overestimatgarticle diffusion. Their main focus was exposing the rela-
the influence of the volume fraction and deviate considerablyionship between the diffusion screening length and the
from more recent theories and computer simulatipfis ~ phase volume fractions at extremely low volume fractions.
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More recently, Glicksman, Wang, and Mardt?] solved the  this paper, we first extend our original diffusion screening
Debye-Huckel equation to obtain the growth rates of parmodel[12] to resolve the volume fraction dependences of the
ticles. Those authors established relationships betweemaximum particle radius, coarsening rate, and PSD during
particle-particle interactions, the coarsening rates, and theteady-state diffusion-mediated phase coarsening. Next, we
volume fraction. simulate phase coarsening in microstructures reflecting the
The earliest study of multiparticle diffusion during phase same volume fraction as used experimentally. Finally, we
coarsening using numerical simulation was published incompare predictions based on modeling and simulation with

1973 by Weins and Cahi13], who used just a few particles gyperimental results, and make suggestions for future quan-
in several configurations to demonstrate some basic coarsefimative studies of late-stage phase coarsening.

ing interactions. Their work was followed by an investiga- The organization of this paper is as follows: In Sec. II, we

tion published by Voorhees and Glicksmidd] who system- : . e . .
atically studied the behavior of several hundred partiCIeSbrlefly introduce the diffusion screening model of coarsening

randomly distributed in a periodic, three-dimensional unitnteractions and describe some results. In Sec. Ill, we pro-
cell to simulate microstructural phase coarsening. LatervIde details of recent mult_|pgrt|cle diffusion §|mulat|oqs. In
Beenakef15] further improved multiparticle diffusion simu- Sec. I\./’ We compare predlct|ons_ from WOde"r.‘g and simula-
lation procedures and was able to increase the total numb&Pn With experimental observations. Finally, in Sec. V, we
of particles during simulation to several thousand. Other inconclude with discussion and a summary.

vestigatord16—18 continued to improve upon the accuracy

and statistical _basis of large-scale simulations of late-stage Il. MODELING

phase coarsening.

Baldan[19] reviewed the status of experimental studies An initial modeling of diffusion-limited phase coarsening
on phase coarsening in nickel-base superalloys. Indeed, éas published in our previous pap2]. However, in this
great deal of experimental data currently exist for a variety osection, we describe the differences with and improvements
interesting high-temperature alloy systems. However, mos®ver prior modelind12], and make the modeling more com-
superalloy systems and the conditions for the experimentgrehensive. The spherical particle size is specified by the
applied to them differ from those that are optimal for mod-dimensionless radiuR and its dimensionless volume per
eling and simulation. To our knowledge the chief exceptionsteradian V. All length scales are nondimensionalized
to this situation is that of phase coarseningsbf Al Li pre-  through the appropriate capillary length=2yV,,/RyT, and
cipitates dispersed in binary Al-Li alloys. The two-phase bi-the coarsening time is nondimensionalized through the char-
nary alloys based on Al-Li provides a nearly ideal binaryacteristic diffusion timery=1./DCoV, to yield the dimen-
system for kinetic study, because thleparticles in this alloy ~ sionless timet wherey, V,, D, Co, Ry, andT represent the
have a small lattice mismatch with the solid solution matrixsurface energy, molar volume, diffusivity, and solute concen-
phase, thus contributing a negligible amount of straintration in the matrix phase at a planar interface, universal gas
induced free energy to the coarsening process. Mahalingagenstant, and the absolute temperature, respectively. We
et al. [20] studied coarsening o0& —Al;Li precipitates in  adopt the usual mean-field ansatz that, at any instant in time,
binary Al-Li alloys using quantitative transmission electron there exists &ritical particle size such that the growth rate
microscopy. Mahalinganet al. obtained steady-state PSD’s averaged over all particles having this size is zero. The criti-
and coarsening rates for microstructures having different precal radius of the population of particles is denotedRyt),
cipitate volume fractions. Recently, Snydet al. [21,2  and the renormalized radius of a partigiés defined as its
studied the coarsening of solid-Sn particles in Pb-Sn eutectitatio R/R*.
liquid under microgravity condition. Their experimental  The central challenge of any phase coarsening theory is to
PSD’s, however, were judged as not reflecting steady-staf@rmulate an accurate expression for the renormalized par-
phase coarsening. ticle growth ratep in each size class of the dispersoid popu-

All of the theories mentioned above have shown that dation. Several studies suggest for microstructures with mod-
nonzero volume fraction of particles does not alter the temerate volume fractions of the dispersed phage< 0.3), that
poral exponent in the coarsening law. However, changing théhere exists interactions among particles, and diffusive ex-
volume fractions does alter the coarsening rate, the kinetichanges between them that depend on their relative sizes and
coefficient of the growth law, and the resulting PSD. Despitespatial positions. Developing a detailed description of these
this qualitative agreement, quantitative coarsening rates argarticle-particle interactions would be prohibitively difficult
PSD’s differ from theory to theonf23]. The agreement for a microstructure comprised of a large number of different
found between theoretically predicted and experimentallysized particles. The challenge is how best to simplify such a
measured volume fraction dependences of the PSD’s and theany-body system so that an accurate result is still obtained.
coarsening rate is generally not satisfactory. Although manyne method of incorporating particle-particle interactions
models and simulations of phase coarsening exist, as menring late-stage phase coarsening, at least to first order, is to
tioned above, few provide predictions that compare quantirepresent the individual interactions by a “diffusion screen-
tatively with experimental results. The chief reason for thising length” R,. The diffusion screening length—a collective
disparity is that key assumptions required by many modelproperty of the particle population—sets the range over
and simulations are not satisfied by the experiments. In adwhich interactions occur, and beyond which they cease. The
dition, the range of volume fractions that have been studiediormalized diffusion screening length may be shown to be
theoretically is not the same as that used experimentally. Idefined agpy=R,/R* [12].
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To proceed with an analysis of a diffusionally screened 1 o3
coarsening system of polydisperse spherical particles sus- T= §|n(R) . )
pended in a three dimensional matrix, one specifies the sizes
of particles by the distributior(R,t), defined here as the The full details in deriving Eq(3) were published in our
total number of particles per unit volume at timpavith radii ~ previous paper{12]. The normalized diffusion screening
betweenrR and R+dR. The emission of solute from dissolv- length p, is related directly to the ratio of moments of the
ing particles, or its absorption by growing particles, is mod-PSD and to the square root of the system’s volume fraction
eled mathematically by a distribution @ourcesor sinks  as follows:
throughout the two-phase microstructure. A consequence of
the system being an “active medium” is that the spatial ex- _ Y ®)
tent of the diffusion field surrounding the particles, on aver- Po= Ap)Vy

age, is restricted through diffusion screening. The onset of ] ) ]

diffusive screening with any nonzero volume fraction re-EQquation(é) clearly shows that the interactions among par-
quires that the Poisson equation replace the usual Laplacidif!es are explicitly related to the volume fraction parameter,
approximation for quasistatic diffusidi8], which yields the and implicitly to the PSD through the moments of the affine

diffusion analog of the Debye-Hiickel equation, nanidi§] (scale fre¢ PSD. Marsh and Glicksman’s study] of the
steady-state form of the PSD shows that the r&pit)/(p)

V20(F) = k[ ¢(F) = ¢.] =0, (1)  varies slowly with volume fraction, and remains of unit or-

R R ) ) ) der. Their result implies that the diffusion screening length in
where ¢(7) =[C(F) ~Co]/C, defines a dimensionless poten- gq_ (6), at least at small volume fractions, should be propor-
tial. C(r) is the physical concentration field in the continuoustjonal to V2 in finite systems, and the coarsening rate con-
matrix surrounding the particles, ard= Ry" is introduced as  stant relative to that of the LSW theory should increase ap-
the diffusion analog of the reciprocal diffusion screeningproximately asvi>—both key predictions that may be tested
length. ¢.. is the pervading “background” diffusion potential directly by experiment. Carlowt al. [24] also obtained simi-
in the matrix. Equatior(1) is well known from theories of |ar predictions earlier through estimation.
dilute ionic solutions and plasmas. Following the classical LSW approadf], the distribu-

The general solution to the Debye-Hiickel equation can bgon functionF(p, 7) satisfies the continuity equation
expressed in the form of the well-known Yukawa potential as

[10] IF(p,7) 0 (dp )
LT PR, 0 =0. 7
97 Taplds (p,7) (7
o(r)=A- FEXp(_ k), @ The Mullins hypothesis of statistical self-similarity can be

applied in the late stages of phase coarsefi®j. The dis-
whereA andB are constants, andis the distance from the tribution function achieves an affine form insofar B, 7)
center of theth particle to the field point. It should be noted may be recast in a product-function form, specifically as
that the termB/r in Eq. (2) corresponds to the unscreened F(p,7)=G(p)H(7). Here the functionH(7) is the time-
Coulombic potential in three-dimensions, i.e., the sphericaljependent portion of the distribution function that specifies
Laplacian potential. This Laplace potential is effectively “cutits temporal behavior, however, its explicit form is not im-

off” by the exponential term over the diffusion screening portant hereG(p) is the time-independent, normalized PSD
length. One can determine the constaftandB in EQ.(2)  and satisfies the following equation:

by using the Gibbs-Thomson local equilibrium relation at the
surface of theth particle, namelyp(R)=1/R;, and an addi- i(@) , 1 dpdGlp) _
tional boundary condition that specifies the outer potential at dp\dr/ G(p)dr dp ’
the diffusion screening distance(R,) =1/R*. One may now . . _
obtain the kinetic growth law of a spherical particle to first- Where is the separation constant, or eigenvalue. The gen-
order at small volume fractions by calculating the volumeeral solution to Eq(8) is

flux using the interfacial concentration gradient and the con- A o
centration jump specified by the phase diagram; specifically, G(p) = exp{f
one finds that dp/dr 0

(8

1
dp |, 9
dpldr " 1 ®)

dp 1 (p-1 p where we have absorbedinto the normalization constait
4 Ay 1 o) P (3)  determined by the normalization condition of the PSD. As
0 shown in Eq.(9) the normalized PSD can be obtained from
where Eq. (9), provided that the growth ratép/dr is known. Be-
fore one attempts to calculate the PSD from ER), how-
B 1d(R*)3 ever, one must determine the const&itappearing in the
3 gt - (4) growth rate equatioK3).
Lifshitz and Slyozo\1] proved that steady-state solutions
K* is the coarsening rate constant for the critical 4i¥8.  to Eq.(8) are possible if and only iK* remains constant, the
The dimensionless time variabteis defined as value of which may be determined by applying stability con-

*
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L L S e fraction. Indeed, asvy,—0, the asymptotic limit is ap-
195 | ] proached, viz.pmax— 1.5, recapturing the classical result ob-

[ tained by LSW[1]. Different approximations used in the
190 ] present theory and those employed by Ardell and Marqusee
185 | . and Ross result in the detailed differences exhibited in Fig. 1.
’ The important issue, however, from the standpoint of im-

180 [ ] proving our understanding of the physics of microstructure
g 1751 7 ___———"" . evolution, is that such theoretical predictions can stimulate
o 170 [ - additional experimental studies to test them.
B It is easier to measure experimentally #nerageradius
165 _ (R) and thus implement the kinetic coarsening equation in
160 | — This work ] terms of average radius rather than critical radius. Combin-
] ----MR ing Eq. (4) with the definition of the normalized radius, one
R Ardel ] obtains the kinetic coarsening equatidm) in terms of the
Y P T T average radius,
0.0 0.1 0.2 0.3
v, (R(1)* - (R(0))> = 3K (V)t, (14
FIG. 1. The relationship between the normalized maximum ra_where
dius pmax and volume fractiorVvy,. The present work is compared — A */ \3
with the results from the theories of ArddB] and Marqusee and K(Vv) = 3K(p)™. (15)
Ross(MR) [9]. (R(0)) is the average radius &t 0, andK(Vy) is the coars-

ening rate constant at a volume fractidfy. The ratio of
ditions in p space. Specifically, Lifshitz and Slyozov showed K(Vy) to K(0), whereK(0)=8/9 [1], can therefore be ex-
that stability based on mass conservation pinspace is pressed as
achieved when two conditions are simultaneously satisfied:
KOV 2Ty (16)
d d(d =g
d—p =0, and d—<d—p> =0. (10 KO 8
T = T =
P Pmax P rr Inserting Eq.(11) into Eq. (16) yields the relationship be-
Furthermore, application of these stability conditions leadiween the relative coarsening rate and the key microstruc-
to the following two results for the coarsening rate constantural length scales,
and the maximum particle radius:
K(Wy) _ 27| 2= (1= 1po)(1 = po+ Vpg+ po+ 1)

_ _ _ 2 - < >3'

. 2-(1-1py(1 +\ps+pn+1 [ p

K = ( Ipo)( : l;o VPo :’o ) (11) K@O) 8 (1-po+ Vp5+po+1)°
(1-po+Vpg+potl) (17

and Equation(17) specifically shows that the influence of volume

=1 —pnt \2+—+1 (12) fraction on the coarsening rate occurs through the diffusion
Prmax PoT NPoT Po™ 2 screening lengtipy and the cube of the average normalized
Equationg(11) and(12), respectively, relate the rate constant radius(p). The proportionality between the relative coarsen-
K* and the maximum radiug,s directly to the normalized ing rate K(V,,)/K(0) and the cubed average normalized ra-
diffusion screening length, and hence directly to the interaceius was confirmed previously both by Brailsford and Wyn-
tions occurring among the particles. Applying the relation-blatt [6] and by Ardell[3]. On this point, interestingly, the
ship between the diffusion screening length and the volumeéhree theories agree. However, the proportionality coefficient
fraction, Eq.(6), to Eq. (12), and approximatingp®)/{p) is a complicated function of the volume fraction, and does
~1, one may relate the maximum particle radius in thediffer among the three theories. The differences among these

population directly to the volume fraction as coarsening theories is shown in Fig. 2. Figure 2 also suggests
that the present prediction is between 6% and 16%, respec-

_ 1 1 1 tively, below independent computations carried out by

Pmax= 1_E * 3v, * 3y, +1. (13) Mandyamet al, who used both “snapshot” and dynamic

simulations in the range of volume fractions 0.1-(BL].
We note that Ardell predicted the relationship between thelhe computer simulations by Mandyashal. included inter-
maximum radius of a coarsening particle to the volume fracactions among particled 1], whereas those by Akaiwa and
tion using his model3], as did Marqusee and Ross with Voorheeq16] included both interactions and spatial correla-
theirs[9]. A comparison of the maximum radius of a coars-tions. The relative coarsening rates predicted from Marsh
ening particle predicted from the current diffusion screeningand Glicksman’s field cell moddl7] are between 17% and
approach with those by Ardell and by Marqusee and Ross ar89% higher than the present theoretical findings, 8—18%
plotted in Fig. 1 as a function of the microstructure’s volumehigher than the simulation resulf41,16 and between 4%
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FIG. 2. Coarsening rates(Vy) normalized by the LSW coars- FIG. 3. Particle size distributions derived from screening theory

ening rateK sy vs volume fractionVy. The present work is com-  yresent work G(p), versus normalized radiysfor several volume
pared with results from other theorigall solid symbol$ Brailsfor- ¢4 tions Vy=0.1,0.12,0.2,0.3. TheS(p) function from LSW

dand and Wynblat{6], Marqusee and Ros®], and Marsh and theory (Vy,=0) is shown for comparison.
Glicksman[7]. Simulation resultgall open symbolsof Akaiwa and

Voorhees[16] and Mandyanet al. [11] are also shown. . . o

from a relatively narrow Gaussian distribution.

. - . Some additional simplifying assumptions are needed:

EP?tlg%|hlgTj%r'chanttr?e pn;—;dlcltlonsdb)t/.Brallfsfort(rj] and W{Q'the kinetics of coarsening is determined solely by volume
? [ ]% t?] addition, eorf_: |Icafpre IC |c:jnsi olr” e(?r\o/\llv ¢ diffusion through the matrix; andi) the diffusion transport

rates of the average particie from models an %o or from each phase domain occurs slowly enough to be

Tsumuraya and Miyata are four to five times larger thanconsidered guasistatic. In the simulation, we use Laplace’s

tho_se pr_edlcted by the pres_ent work, and all the f)ther theoéquation as the quasistatic approximation to describe the
_retlcal, simulated, and _expenmental results. Ardell’s Coarsenﬁwultiparticle concentration fields in the matrix, so that

ing rates[3] are also highe(by factors of 3—4than are the

other theoretical, simulation, and experimental results. These

comparisons imply that Ardell and Tsumuraya and Miyata vVZ(F)=0, (18
overestimated the contributions from the interactions among

particles to the average growth rate. Because of the lar
disparity the coarsening rates predicted from Tsumuraya an
Miyata, and Ardell, are not included in Fig. 2.

Figure 3 shows the PSD derived from the present theor
for various values ol,, from 0 to 0.3, all of which are
obtained by numerical solution of E¢) with the approxi-
mation,(p%)/(p)~ 1, for calculation of the normalized diffu- 1
sion screening length,. After obtaining PSD’s for various C(Ry) = E (19)
volume fractions, we calculated the rati@?)/{p), for dif-
ferent volume fractions to check the approximation. We

found that the ratio varies extremely slowly with volume The solution to Laplace’s eq'u.atlon .fmr pqucIes may be
fraction, but remains about 12% different from unity. Theserepresented as the superpositiomadimensionless concen-

results from some PSD’s will be compared with our own ration fields summed over the system of particles, namely,
simulations and experimental results in Sec. IV.

hereC(f) is the dimensionless concentration of the Laplac-
1an diffusion field. The boundary conditions at the spherical
interface of theith particle are specified through the Gibbs-
Yhomson local equilibrium solubility relation, namely

n
cr)=2 5_.e.. (20)
Ill. SIMULATION = |r =il

A two-phase coarsening system may be simulated by Theith particle’s total volume flux #B; and the far-field
placing n particles of the dispersoid phase in a cubic box.potentialC,. comprisen+1 unknowns. The microstructure’s
The contiguous spaces between the particles are filled by thglobal mass conservation law for a discrete system consist-
matrix phase, throughout which the dispersoid population isng of n spherical particles may be expressed through the
embedded. Particles are located by specifying the positiongolume fluxes a£’, B;=0. Using Eq.(20) along with the
of their centers with three random coordinates representinghass conservation law, one obtains after a few steps of alge-
the Cartesian vectors and by their radiiR; chosen initially  bra
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2.0

1 1 n n R - T

Co=—-——> B 1, (21) —e—V,=0.001
(R (R ka lik L - == V,=0.01
——V,=0.12

wherer;, is the distance between the centers of any pair of
particlesj andk. The relationship for the far-field potential,
Eq. (21), expresses microstructure responses that include in-
teractions among particles. Equati¢dl) clearly demon-
strates that the far-field potentigl, depends explicitly on
local information concerning particle positions and the dis-
tances between particle pairs. Moreover, E2{) includes
enough detailed environmental information to describe the
“locale” of every particle, and, most importantly, its subtle
influence on the particle’s diffusion-limited growth or shrink-
age.

The volume flux entering or leaving the surface of each
particle may be related to the kinematics of the rate of

a
X
<]

change of spherical volume, to yield the dimensionless form

of the growth rate of théth particle, FIG. 4. Particle size distributior(p) derived from simulations
dR B based on the present work ¥=0.001,0.01,0.12. Increasing the
— == —'2 (i=1,2,...n). (22) volume fraction of the dispersoid lowers the peak value and broad-
dt R ens the PSD.

The Runge-Kutta method was used to integrate the growth ) _

rate, Eq.(22). One obtains a system of linear equations byconstant normalized by the coarsening rate constant of LSW,
substituting Eq(20) into the Gibbs-Thomson boundary con- We obtainedK(0.12/K(0)=1.828, which is close to the
dition, Eq.(19), for the population ofi particles. The set of Vvalue, 1.814, derived from the present screening theory.
linear equations may be cast in matrix form as

A'-B'=U, (23 IV. COMPARISON WITH EXPERIMENT

whereA’, B, andU’ are, respectivelynxn, nx1, andn  Because the Al-Li system contains spherical precipitates
X 1 matrices. These matrices are detailed in the Appendixyith negligible strains at the particle-matrix interface, this
The Gauss-Seidel method was employed to solve the resulbinary alloy provides a nearly ideal system for studies of

ant system of linear equations, £g3), yielding at each time  coarsening. Mahalingaet al. used quantitative transmission
step updated values for th&'s. Substitution of the updated

B;'s back into Eq.(22) dynamically advancegnarches the 1
coarsening by sequentially updating both the radii of all the
particles and their coordinates at any time step. The environ-
mental information built into Eq(21) adds important micro-
structural physics to the diffusion solution in the form of
correlations. In fact, in the present simulations, one can cal-
culate all terms exactly in Eq21), which means that one 01
can calculate all the interactions for every particle. Normally
mean-field descriptions of microstructure evolution are un- “‘}\
able to calculate all interactions included in Eg1). (o

We carried out simulations of late-stage coarsening for vV
various values of the volume fraction of the dispersoid phase
from 101°to 0.2. The PSD’s observed for volume fractions 0.01
Vy=0.001,0.01,0.12 are plotted in Fig. 4, which shows that
the height of a PSD is gradually reduced and its width com-
mensurately broadened with increasing volume fraction.

The growth law for particles for a dispersoid volume frac-
tion of Vy=0.12 is plotted in Fig. 5. The double logarithmic
plot, Fig. 5, clearly shows that, after some transient period, a 0.001
steady-state growth law develops where the cubic average 0.1 t 1
radius of particles becomes proportional to the time. The
coarsening rate constant of the cubic growth law is deter- FiG. 5. Cube of the average particle dimensionless ra¢Rié
mined by the slope ofR(t))® vs t plot. The slope is calcu- ys dimensionless coarsening tiouble logarithmic coordinates
lated using a linear regression of these data. Using the defbata are from the present simulations at the volume fractign
nition of relative coarsening rate, the coarsening rate=0.12.
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12 T T T T T T T PSD with experiment, as compared with continuum screen-
. —— exp. Ref. [20] 1 ing theory, is that in our simulationall the multiparticle
10 L~~~ -Present theory - interactions are included throughout the system. However, in

e Simulation B

modeling, one must approximate these interactions. In Fig. 6,
it is demonstrated that the tail of the PSD derived from our
simulations mimics the experimental data. We obtained an
estimate for the maximum normalized radius using @8),
and found at a volume fractiol,,=0.12 thatpy.~1.67.
Using computer simulations, we found the corresponding
maximum normalized radiup,.~1.74. The experimental
result reported by Mahalingamt al. shows that the corre-
sponding maximum normalized radipg,,~ 1.80[20]. Fig-
ure 1 shows that at a dispersoid volume fraction \Qf
=0.12, Marqusee and Ross’s theory predigis~1.70, and
Ardell's theory predicty,,~ 1.90.
. . In an attempt to calculate the relative kinetic coarsening
P rate, K(0.12/K(0), we obtained the following results from
the continuum theory and simulatiot(0.12)/K(0)=1.81
FIG. 6. Particle size distributiongnormalized gn(p) from  and K(0.12/K(0)=1.83, respectively, which are markedly
present screening the_ory and simulations co_mpared with _the expefifferent from the experimental valuk(0.12/K(0)=3.72
mental PSD of Mahalingaret al. [20] for Al-Li alloy at a disper- 156 The value of the calculated coarsening rate is sensitive
tsr?éd \g;l:rc:hjra%?_n 1OZV_Zi1£' Thte normalization used is 10 Set 1, tha chojce of the particle-matrix interfacial energy and the
P € =14 equ unity. interdiffusion coefficient for the matrix, both of which re-

electron microscopyi20] to investigate the coarsening be- main uncertain. This suggests that one needs more extensive
havior of & precipitates in a series of binary Al-Li alloys. and accurate thermophysical data for experimental alloys
These authors carried out careful experiments and obtaind¢sed to test kinetic coarsening rate constants.
the microstructure’s steady-state PSD. Mahalingeimal.
cIaimed that only the PSD pr.edicted. from the theory of V. CONCLUSIONS
Davieset al. [26] is close to their experimental PSD for the
case of volume fraction o8’ V\,=0.12, despite the fact that =~ We approximated a two-phase microstructural system
the other theories also predict a broadening of the PSD witgonsisting of a spherical dispersoid phase randomly distrib-
increase of volume fraction of particles. Figure 6 shows theuted within a matrix phase as a mesoscopic distribution of
PSD’s at volume fractioi,,=0.12 derived from the present diffusion sources and sinks. Within the framework of a Pois-
theory and simulation, and from the experimental data ofon approximation for the quasistatic diffusion field, Yukawa
Mahalingamet al. [20]. Figure 6 shows that the PSD’s from solutions to the well-known Debye-Huckel equation may be
the present theory is in good agreement with the experimeridsed to describe the screened concentration fields surround-
tal PSD. We incorporated diffusional interactions among paring the particles. The contributions of the effective interac-
ticles that yielded a new growth rate equation. When inserteions among a population of particles to the average growth
into the continuity equation the new growth rate equation ledate of a particle was found. Such interactions increase the
to the PSD shown in Fig. 6. However, in their treatment ofcoarsening rate and alter in specific ways the PSD at any
coarsening kinetics, Davies al. used the LSW kinetic equa- Vvolume fractionVy <0.3. Computer simulations were carried
tion that lacks all particle-particle interactions, but added theput for various values of the dispersoid volume fractions
influence of coalescence to the continuity equation. In factUsing multiparticle diffusion techniques that exactly consider
for the case of volume fractiow,=0.12, Mahalinganet al.  diffusional interactions among particles. Our results from
[20] specifically note that they did not observe any coalesmodeling and simulation are in acceptable agreement with
cence effects in their experiments. Although Davegsal. — experimental results derived from Al-Li alloys.
[26] predict a PSD in reasonable agreement with the recent Several additional specific conclusions can be drawn from
experimental results, the mechanism responsible for thehis study:
broadening of their PSD from that predicted by LSW is not (i) At small-to-moderate volume fractions of the precipi-
applicable. In fact, diffusional interactions—i.e., “soft colli- tate phase(0<V,,<0.3), the interaction screening length
sions” and not coalescences—among the particles, as esmong particles is proportional t@l’z—a theoretical pre-
plained in this paper, contribute most of the broadening tdliction which may now be tested through experiments.
the PSD at lower volume fractions. In microstructures with (i) Stronger interactions among particles reduce the
much higher dispersoid volume fractions the effect of coaheight and broaden the steady-state PSD. Moreover, the
lescence may become significant. present study established the relationship between the maxi-
It is interesting to point out that the PSD derived from themum radius of a particle and the volume fraction via Eg.
present simulations is even closer to the experimental resultd3). This too can be tested through experiment. At
of Mahalingamet al. [20] at volume fractiorv,,=0.12. The =0.12, we found that the maximum normalized radiygy
reason for the better correspondence of our simulation-based 1.67 from the continuum screening theory, apglay
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~1.74 based on our multiparticle computer simulations. Thé®SD. Accurate description of interparticle interactions seems
experimental results of Mahalinghaet al. show that in  sufficient to obtain a PSD in good agreement with experi-
Al-Li two phase alloys ppa~1.80 atV,,=0.12. ment, at least at lower volume fractions.

(i) The relative coarsening rat&(Vy)/K(0), derived
from screening theory is similar to that predicted by Brails-
ford and Wynblatt’s theory6], and is in reasonable agree-

ment with recent multiparticle computer simulation results The authors are pleased to acknowledge partial financial

[11.18. In the specific case where,=0.12, the_ fe'a“"? support received from the National Aeronautics and Space
coarsening rate from screening theory agrees with multipar;

ticle simulations reported here; however, the result differs byﬁgmwfgag'iﬂggﬂa{f]gagu?ﬁ;?aﬂfht Cefntltler, uT(der lG:jant
a factor of about 2 from experimeri20]. The difference : e o ] gratefully acknowledge
might be related to the choice of particle-matrix interfaciaIS”ppo.rt from Fhe National Science Foundgﬂon 'Intern'atlonal
energy and matrix interdiffusion coefficient used in the ex-Materials Iqstltute program for the Combinatorial Sciences
perimental study. More extensive and accurate thermophysfnd Materials - Informatics CollaboratoryCoSMIC-IMI)

cal data are needed for experimental alloys used to test tH8rough NSF Grant No. DMR -0231291.

coarsening rates derived from theory and simulation.

(iv) Estimates of the PSD’s derived from modeling and
simulation atVy,=0.12 are in good agreement with the PSD
derived from experimental results on Al-Li alloy20]. We Using terms and definitions already included in the body
found that it is not neccessary to include coalescence effects this paper, matrice8’, B, andU’ in Eq.(23) are defined
at this relatively low volume fraction to predict an accurateas follows:
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